烽火社区 首页 应用 PCB技术 查看内容
人工智能 新风净化 电源技术 嵌入式系统 单片机 模拟技术 LED照明 光电技术 安防监控 传感技术 RFID技术 通信网络 防盗报警 电子测量 PCB技术 基础电子 工业电子 医疗电子 汽车电子 消费电子

如何解决CSP封装的散热难题?

2017-12-7 11:37 AM| 发布者: admin| 查看: 1097| 评论: 0

摘要: 什么是CSP?CSP(chip scale package)封装是指一种封装自身的体积巨细不凌驾芯片自身大小的20%的封装技能(下一代技术为衬底级别封装,其封装大小与芯片相同)。为了告竣这一目的,制造商尽大概的淘汰不须要的布局 ...

什么是CSP?

CSP(chip scale package)封装是指一种封装自身的体积巨细不凌驾芯片自身大小的20%的封装技能(下一代技术为衬底级别封装,其封装大小与芯片相同)。为了告竣这一目的,制造商尽大概的淘汰不须要的布局,好比接纳尺度高功率LED、去除陶瓷散热基板和毗连线、金属化P和N极和直接在LED上方覆盖荧光层。

根据Yole Développement 统计,CSP封装将在2020年占到高功率的34%。

为什么CSP封装面临散热挑战?

CSP封装被设计成通过金属化的P和N极直接焊接在印刷电路板(PCB线路板)上。在某一方面来看简直是一件功德,这种设计减少了LED基底和PCB之间的热阻。

但是,由于CSP封装移除了作为散热器件的陶瓷基板,这使得热量直接从LED基底通报到PCB板从而酿成了强烈的点热源。这时,对于CSP的散热挑战从“一级(LED基底层面)”转变成了“二级(整个模块层面)”。

针对于这种情况,模块的设计者开始使用金属覆盖印刷电路板(MCPCB)来应对CSP封装。

blob.png

图1{京电港论坛}、1x1 mm CSP LED 在0.635 mm AlN 陶瓷基板(170 W/mK)上的热辐射模型

blob.png

从图1、 2中可以看出 ,研究人员针对MCPCB和氮化铝(AlN)陶瓷举行了一系列的热辐射模拟试验,由于CSP封装的结构,热通量仅仅通过面积很小的焊点传递,大部门热量均会合在中心部位,这会导致使用寿命减少,光质量低沉,甚至LED失效。

MCPCB的理想散热模型

通常大多数的MCPCB的结构:金属外貌镀上一层约莫30微米的表面覆铜。同时,这个金属表面另有一层含有导热陶瓷颗粒的树脂介质层覆盖。但是过多的导热陶瓷颗粒会影响整个MCPCB的性能和可靠性。

同时,对于导热介质层,总是存在性能与可靠性之间的权衡。

根据研究人员的分析,为了更好的散热效果,MCPCB需要降低介质层的厚度。由于热阻(R)即是厚度(L)除以热传导率(k)(R= L/(kA)),而热传导率只由介质的自己属性决定,因此厚度是唯一的变量。

但是由于介质层因为生产工艺的限制和使用寿命的思量无法无限制的减少厚度,因此研究人员需要一种新的质料来办理这个问题。

纳米陶瓷如何变成MCPCB的最佳方案?

研究人员发现一种电化学氧化过程(ECO)可以在铝表面上生成一层几十微米的氧化铝陶瓷(Al2O3),同时这种氧化铝陶瓷拥有良好的强度和相对较低的热传导率(大约7.3 W/mK)。但是由于氧化膜在电化学氧化过程中自动与铝原子键合,从而降低了两种材料之间的热阻,而且还拥有一定的结构强度。

同时,研究人员将纳米陶瓷与覆铜联合,让这种复合结构的整体厚度在非常低的情况下还拥有较高的总热传导率(大约115W/mK)。因此,这种材料很适合CSP封装的需求。

结论

当设计者继续探索寻找符合CSP封装的材料时,往往发现他们的需求已经超过了现有技术。散热问题导致纳米陶瓷技术的催生,这种纳米材料介质层能够填补传统MCPCB与AlN陶瓷的清闲。从而推动设计者推出更加小型化,清洁高效的光源。



鲜花

握手

雷人

路过

鸡蛋

相关阅读

热点图文
推荐阅读
文章排行
返回顶部